首页> 外文OA文献 >Track stabilisation with geosynthetics and geodrains, and performance verification through field monitoring and numerical modelling
【2h】

Track stabilisation with geosynthetics and geodrains, and performance verification through field monitoring and numerical modelling

机译:利用土工合成材料和土工合成材料进行轨道稳定化,并通过现场监测和数值建模进行性能验证

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

All over the world, ballasted railway tracks form one of the major transportation networks designed to provide heavy haul freight and passenger traffic. However, large cyclic loading from heavy axle trains operating at high speeds often causes excessive deformation and degradation of ballast, as well as unacceptable differential settlement of compressible foundation and, or pumping of the soft subgrade soils. The problem becomes more severe under high impact loads due to rail or wheel imperfections, causing accelerated ballast breakage. A proper understanding of load transfer mechanisms and their effects on track deformations are essential prerequisites for minimising maintenance costs. The field trial at Bulli demonstrated that for trains with wheel flats, extremely high stresses were transmitted to the ballast layer. Installing resilient mats such as rubber pads (shock mats) in rail tracks can attenuate impact forces and consequently mitigate particle degradation. In view of this, a series of laboratory tests were carried out using a unique large-scale drop-weight (impact) rig to evaluate the role of shock mats. The field trial also showed that the moderately-graded recycled ballast, when used with a geocomposite layer, could perform well in comparison with traditionally uniform fresh ballast. Both Class A predictions and field measurements at Sandgate proved that relatively short vertical drains would be sufficient to dissipate cyclically induced pore pressures, curtail the lateral movements, and increase the shear strength and bearing capacity of the subgrade. In summary, this invited Special Paper describes in detail the large-scale laboratory tests imperative for material characterisation, fullscale instrumented field trials for performance verification, elasto-plastic finite element analyses for predicting the behaviour of tracks stabilised using shock mats, and geosynthetic products including grids and prefabricated drains.
机译:在世界各地,压载铁路轨道是旨在提供重载货运和客运的主要运输网络之一。但是,高速运行的重型轴系列车产生的较大循环载荷通常会导致压载物过度变形和退化,以及可压缩地基的不均匀沉降和/或泵送软土。在高冲击载荷下,由于轨道或车轮缺陷,问题会变得更加严重,从而导致压载物加速破裂。正确理解载荷传递机制及其对轨道变形的影响,是使维护成本降至最低的必要前提。布利(Bulli)的现场试验表明,对于带轮辋的火车,极高的应力会传递到压载层。在轨道上安装诸如橡胶垫(防震垫)之类的弹性垫可以减弱冲击力,从而减轻颗粒降解。有鉴于此,使用独特的大型落锤(冲击)装置进行了一系列实验室测试,以评估防震垫的作用。现场试验还表明,中等等级的再生压载物与土工复合材料层一起使用时,与传统的均匀新鲜压载物相比,性能良好。 Sandgate的A级预测和现场测量都证明,相对较短的垂直排水足以消散周期性引起的孔隙压力,减少横向运动并提高路基的抗剪强度和承载力。总而言之,本受邀的特殊论文详细描述了材料表征所必需的大规模实验室测试,性能验证的全面仪器现场试验,用于预测使用防震垫稳定的轨道行为的弹塑性有限元分析以及土工合成材料,包括网格和预制排水沟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号